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Toxoplasma gondii, an intracellular protozoan parasite,
can infect humans in 3 different ways: ingestion of tissue
cysts, ingestion of oocysts, or congenital infection with
tachyzoites. After proliferation of tachyzoites in various
organs during the acute stage, the parasite forms cysts pref-
erentially in the brain and establishes a chronic infection,
which is a balance between host immunity and the parasite’s
evasion of the immune response. A variety of brain cells,
including astrocytes and neurons, can be infected. In vitro
studies using non-brain cells have demonstrated profound
effects of the infection on gene expression of host cells, in-
cluding molecules that promote the immune response and
those involved in signal transduction pathways, suggesting
that similar effects could occur in infected brain cells.
Interferon-c is the essential mediator of the immune re-
sponse to control T. gondii in the brain and to maintain
the latency of chronic infection. Infection also induces
the production of a variety of cytokines by microglia, astro-
cytes, and neurons, which promote or suppress inflamma-
tory responses. The strain (genotype) of T. gondii, genetic
factors of the host, and probably the route of infection and
the stage (tachyzoite, cyst, or oocyst) of the parasite initi-
ating infection all contribute to the establishment of a
balance between the host and the parasite and affect the
outcome of the infection.
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Introduction

Toxoplasma gondii is an extremely widespread, and thus
successful, protozoan with a complex lifecycle involving
felines, in which sexual development occurs, as its defin-
itive host. Humans become infected in one of 3 ways: by
ingesting T. gondii tissue cysts (containing bradyzoites)
present in the undercooked meat (especially lamb and
pork) of infected food animals; by ingesting highly infec-
tious oocysts (containing sporozoites) present in water,
garden soil, children’s sandboxes, etc, contaminated by
infected cat feces; or through congenital transplacental
transmission of rapidly replicating tachyzoites from
mothers who become infected during pregnancy (eg,
by changing the cat litter) and pass the infection to the
fetus.

A possible outcome of congenital infections is severe
neurological and ophthalmological disease. The outcome
of the other 2 modes of infection is usually a chronic, la-
tent infection that persists for life. This latent infection
has been assumed, until recently, to be clinically asymp-
tomatic; as indicated in the accompanying articles, this
assumption is being reconsidered.

By definition, latent infections involve a complex inter-
play between parasite and host, producing some degree of
harmony. In humans, T. gondii performs a delicate bal-
ancing act that involves, on the one hand, modification of
its proximal (and perhaps distal) environment in ways to
promote its survival and transmission and, on the other
hand, avoidance of overt tissue damage (directly from the
parasite or indirectly from the immune response) that
would lead to the demise of its host. In the vast majority
of T. gondii infections, the parasite: host homeostasis is
effectively achieved, resulting in a latent, subclinical in-
fection. A variety of parasite and host factors can influ-
ence this balance, however, resulting in effects that can
range from subtle to profound. In this review, we discuss
the parasite and host determinants that influence the out-
come of infection and the effects of these determinants on
the brain.

Effects on the Brain

Once it enters the body, T. gondii traverses the intestinal
or placental epithelium as a free parasite by paracellu-
lar transmigration1 and enters circulating cells such as
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macrophages2,3 or dendritic cells.3,4 It then appears to use
such cells as a ‘‘Trojan horse’’ to gain access to privileged
sites such as the brain.

In vitro studies using mouse brain cells have demon-
strated that tachyzoites invade microglia,5,6 astrocytes,7,8

and neurons,6,9 and the parasite thereafter forms cysts
within these cells.6,8 An in vitro study using human neu-
rons and astrocytes showed thatT. gondii also forms cysts
in these cells.10 Human cell division autoantigen-1 was
recently identified as a key host determinant of brady-
zoite development within human fibroblasts.11 Electron
microscopy studies on brains of chronically infected
mice demonstrated that the majority of cysts are in neu-
rons12,13; the cysts were identified within axons, den-
drites, or the cell body of the neurons.13 In mice with
congenital toxoplasmosis, cysts were also found within
neurons in their brains.14 In humans, proliferating tachy-
zoites have been detected in glial cells in a patient who
had developed toxoplasmic encephalitis.15 In another
case of toxoplasmic encephalitis, T. gondii bradyzoites
were observed in a Purkinje cell in the cerebellum.16

Toxoplasma gondii cysts have also been reported in astro-
cytes in humans17; in that study, astrocytes were the only
cell type that could be identified due to the poor preser-
vation of the samples. Collectively, these studies demon-
strate that T. gondii can infect a variety of brain cells, but
additional studies are needed to identify the host cells that
preferentially harbor cysts within the brain.

The effects of T. gondii on brain cells can be almost im-
mediate, as shown by the work of Blader et al,18 who used
tachyzoites of a type II strain to examine host gene ex-
pression profiles in infected human fibroblasts. Within
the first 2 hours of infection, although <1% of the 22
000 known human genes examined were upregulated
by >2-fold, almost half of the affected genes encoded
proteins associated with the immune response. Included
among the upregulated genes were those encoding che-
mokines (GRO1, GRO2, LIF, and MCP1) designed to
recruit immune cells, cytokines (IL-1b and IL-6) capable
of activating immune responses, and transcription fac-
tors (REL-B, NF-jBp105, and I-jBa) that can promote
expression of additional immune regulators. Thus, it is
clear that the host cell mounts a strong response directed
at alerting and activating the immune system to react to
the infection.

Twenty-four hours postinfection, by which time the
parasite has replicated 2–4 times, a variety of host glyco-
lytic and mevalonate metabolic transcripts are upregu-
lated, presumably, in response to the nutritional drain
imparted by the infection. Intracellular tachyzoites are
also known to manipulate a variety of signal transduction
pathways related to apoptosis,19–21 antimicrobial effector
mechanisms,22–25 and immune cell maturation.26 The re-
cent finding of delivery of protein phosphatase 2C re-
leased from rhoptries of tachyzoites into the host
nucleus27 will likely be a key step forward toward under-

standing the molecular basis of such transcriptional ma-
nipulation. Although similar studies on brain cells have
not been reported, it seems likely that T. gondii infection
may also influence signaling pathways in the brain.

There is only limited information on manipulation of
host cells by bradyzoites. Foudts and Boothroyd28 re-
cently reported that many of the same host genes (eg,
cytokines and chemokines) are affected by infection
with bradyzoites or tachyzoites in human fibroblasts;
however, the number of genes and the magnitude of ac-
tivation were both lower in bradyzoite infection. Future
gene expression studies on tachyzoite and bradyzoite in-
fection of brain cells may reveal cell type–specific changes
influencing the secretion of not only cytokines and che-
mokines but also neurotransmitters, receptors, ion chan-
nels, and other central components of brain physiology.

Elevated anti-T. gondii IgG antibody levels have been
reported in patients with first-onset schizophrenia,29,30

suggesting an involvement of this parasite in the etiology
of schizophrenia. Elevated serum levels of IL-1b have also
been detected in individuals with acute schizophrenia,
but not chronic schizophrenia,31 and there were no differ-
ences in IL-1b or IL-6 serum or cerebro-spinal fluid levels
in medicated patients compared with a control group.32

Because tachyzoites induce more pronounced inflamma-
tory cytokine responses in host cells than do bradyzoites,
as described above, proliferation of tachyzoites in the
brain may be related to the onset of schizophrenia. The
lack of elevated IL-1b or IL-6 in medicated patients could
be due to the antitoxoplasmic activity of some antipsy-
chotic drugs.33,34 Interestingly, anti-T. gondii IgM anti-
body, a key indicator of acute acquired infection, is not
elevated in the sera of patients with first-onset schizophre-
nia,29,30 implying that the patients are not in the acute
stage of a newly acquired infection. Therefore, a reactiva-
tion of chronic infection with the parasite (proliferation of
tachyzoites caused by cyst rupture) in the brain might be
involved in the onset of the disease. In support of this pos-
sibility, expression levels of proinflammatory cytokines,
includingIL-1bandIL-6,arehigher inthebrainsofamouse
strain in which tachyzoite proliferation occurs in this organ
during the later stage of infection compared with the brains
of another mouse strain that prevents tachyzoite prolifera-
tion during chronic infection.35 It is noteworthy that indi-
viduals with congenital T. gondii infection often develop
ocular toxoplasmosis later in life,36 and the disease is con-
sidered to be due to reactivation of infection. The onset of
toxoplasmic chorioretinitis is most frequentduring the ages
of 20–30,36 correlating well with the age of onset of schizo-
phrenia.37 Therefore, congenital infection with T. gondii
may be involved in the etiology of schizophrenia.

Determinants of the Outcome of Infection

A variety of parasite and host factors determine the out-
come of infection. When these factors are in balance,
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a chronic latent infection results. When they are out of
balance, active disease may ensue. The most important
factors appear to be the mode of infection, parasite
strain, host cytokine response, and host genes.

Mode of Infection

It is known that bradyzoites, sporozoites, and tachyzoites
show pronounced differences in gene expression, cell in-
vasiveness, replication rate, and migratory proficiency. It
thus seems likely that the course of infection and clinical
manifestations may be strongly influenced by the mode of
the initial infection. Because congenital infections with
tachyzoites produce a distinct clinical picture, including
chorioretinitis and neurologic disturbance, which can be
discovered later in life even when the infection is asymp-
tomatic at birth,36 it is also possible that ingesting tissue
cysts containing bradyzoites or ingesting oocysts contain-
ing sporozoites may produce different clinical outcomes.
The outcomes may also be influenced by the timing of the
infection, such as before or after birth.

Parasite Strain

Strains of T. gondii have been classified into 3 major gen-
otypes (types I, II, and III) based on polymorphisms of
their genes.38 Mice infected with type II strains develop
toxoplasmic encephalitis after immunosuppressive treat-
ment with anti-interferon-c (IFN-c) antibody, whereas
animals infected with a type III strain do not.39 Type
II is the predominant strain isolated from patients with
AIDS, from non-AIDS immunocompromised patients
with toxoplasmic encephalitis, and from those with con-
genital infections.40–42 By contrast, isolates from out-
breaks of acute toxoplasmosis, which show a tendency
to cause severe ocular disease, are frequently type I.43

Thus, the parasite genotype appears to be an important
factor influencing the outcome of clinical illness in
humans. If congenital infection with T. gondii is involved
in the etiology of schizophrenia, as discussed above, this
would implicate type II strains in the etiology of schizo-
phrenia. Because type I strains have a general tendency to
grow more aggressively than type II and III strains in host
cells, including human fibroblasts in vitro, the aggressive-
ness of type I tachyzoites might also contribute to the de-
velopment of schizophrenia. Studies using murine models
have demonstrated that the strain (genotype) of the par-
asite affects the immune responses of infected cells and
hosts, the IL-12 response by macrophages following in-
fection in vitro,44 the recognition of infected cells by
T cells in vitro,45 and the cytokine response of spleen cells
and within the brains of infected mice.46,47

Host Cytokine Response

Among the cytokines produced in response to T. gondii
infection, IFN-c is the most important. The proliferation
of tachyzoites during the acute stage of infection is sup-

pressed by IFN-c–dependent, cell-mediated immune
responses48–50 and, to a lesser degree, by humoral im-
munity.51–53 This leads to the development of chronic
infection characterized by T. gondii cysts, primarily in
the brain. The immune responses are essential for
maintaining the latency of chronic infection. Individuals
with immunodeficiencies such as AIDS are at risk
for reactivation of infection and the development of
life-threatening toxoplasmic encephalitis.54–55 Murine
models of the disease have demonstrated that IFN-c is
essential for the prevention of reactivation and develop-
ment of toxoplasmic encephalitis.56–58 Cyst rupture has
also been observed in chronically infected immunocom-
petent mice, although it is extremely rare.59 The incidence
of cyst rupture in the brain may be higher in mice con-
genitally infected with the parasite.60 In these cases, how-
ever, the immune response probably limits proliferation
of the parasite.

The main source of IFN-c are T cells, which infiltrate
into the brain following infection.61–65 IFN-c production
by this lymphocyte population is essential for preventing
the reactivation of infection.64,65 T cells bearing T-cell re-
ceptor Vb8 are the most numerous population that pro-
duces IFN-c in the brains of infected mice that are
genetically resistant to development of toxoplasmic en-
cephalitis.66 Furthermore, adoptive transfer of Vb8þ

T cells alone into infected nude mice (which lack T cells)
prevents the development of toxoplasmic encephali-
tis.66,67 Thus, in murine models, the parasite antigens rec-
ognized by this T-cell population appears to play a
crucial role in the induction of the protective T-cell
responses to prevent reactivation of infection. In addition
to T cells, other cells also must produce IFN-c to prevent
reactivation of chronic infection.68 Microglia and blood-
derived macrophages are the major non–T-cell popula-
tions that produce this cytokine in the brain of infected
mice.69

Both human70 and murine microglia5 inhibit intracel-
lular replication of tachyzoites in vitro when activated by
IFN-c plus lipopolysaccharide. Nitric oxide (NO) pro-
duction by inducible NO synthase is important for the
inhibitory effect of activated murine microglia.5 In con-
trast, NO is not involved in the inhibitory effect of human
microglia,70 and the mechanisms of their inhibitory effect
are not yet known.

Human astrocytes activated by IFN-c plus IL-1b in-
hibit tachyzoite replication in vitro through their pro-
duction of NO.71 In addition, IFN-c and TNF-a
synergistically induce an expression of indoleamine 2,3-
dioxygenease (IDO) in human glioblastoma cell lines
and naı̈ve astrocytes, and this IDO activity results in
strong toxoplasmostatic effects through the depletion
of intracellular pools of tryptophan.72 IFN-c–activated
murine astrocytes also prevent the intracellular multipli-
cation of tachyzoites; their inhibitory effect is not medi-
ated by NO or IDO but by IGTP, a IFN-c–inducible
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GTPase of the p47 family.73 More recently, Martens
et al74 showed that several p47 GTPases are recruited
to the parasite-containing vacuole, where they coordinate
membrane vesiculation and destruction of the parasite in
murine astrocytes.

In addition to IFN-c, infection with T. gondii induces
a variety of other cytokines by microglia,75–78 astro-
cytes,75,77 and neurons.75,79 These may promote (eg,
IL-1 and TNF-a) or suppress (eg, IL-10 and TGF-b)
the inflammatory response. These cytokines appear to
play an important role in regulating the resistance of
hosts against T. gondii infection in the brain. Although
T cells are the predominant lymphocyte population in
the brains of infected animals, B cells,80 NK cells,63,69

macrophages,69,80,81 and dendritic cells 3,69,82,83 also infil-
trate into the brain after infection.

Host Genes

Susceptibility and resistance to chronicT. gondii infection
in the brain is under genetic control in both mice and
humans. In mice, the Ld gene in the D region of the major
histocompatibility complex (H-2) is important for resis-
tance to development of toxoplasmic encephalitis.84,85

Resistance of mice to the disease is associated with the
formation of fewer T. gondii cysts in the brain.84–86 In
humans, HLA-DQ3 appears to be a genetic marker of
susceptibility to development of cerebral toxoplasmosis
in AIDS patients87 and congenitally infected infants,88

whereas DQ1 appears to be a genetic marker of resis-
tance.87 Because the Ld gene in mice and the HLA-DQ
genes in humans are part of the major histocompatibility
complex that regulates the immune responses, the regu-
lation of the immune responses by these genes appears to
be important to determine the resistance/susceptibility of
the hosts to the development of toxoplasmic encephalitis.

Conclusions and Future Research

The outcome of T. gondii infection is strongly influenced
by both parasite and host determinants. Parasite strains
can differ greatly in their aggressiveness during infection
and their propensity to form cysts for long-term survival.
With respect to the parasite’s ability to influence host
gene expression, it is likely that some of these effects
are universal, whereas others are cell-type specific. Future
research should extend such studies to various types of
brain cells and examine differences between bradyzoite
and tachyzoite effects on host gene expression. For con-
trolling T. gondii infections, the host critically relies on
IFN-c produced by multiple populations of immune
cells, which helps infected cells limit growth of the para-
site. Genetic studies also suggest that regulation of the
immune response by the major histocompatibility com-
plex probably plays an important role in the susceptibil-
ity/resistance to disease. Given the strong influence of

both parasite and host on the outcome of infection, it
remains to be seen whether specific combinations of par-
asite and host determinants can uniquely affect brain
physiology, as well as psychiatric disorders.
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